Meade Instruments Corporation
Telescopes · Binoculars · Microscopes

Meade Model 395 Refracting Telescope
 Understanding Celestial Movements and Coordinates
IMPORTANT NOTICE! Never use a telescope or spotting scope to look at the Sun! Observing the Sun, even for the shortest fraction of a second, will cause irreversible damage to your eye as well as physical damage to the telescope or spotting scope itself.
Understanding where to locate celestial objects, and how those objects move across the sky is fundamental to enjoying the hobby of astronomy. Most amateur astronomers adopt the simple practice of "star-hopping" to locate celestial objects by using star charts or astronomical software which identify bright stars and star patterns (constellations) that serve as "road maps" and "landmarks" in the sky. These visual reference points guide amateur astronomers in their search for astronomical objects. And, while star-hopping is the preferred technique, a discussion of using setting circles for locating objects is desirable since your telescope is provided with this feature. However, be advised, compared to star-hopping, object location by use of setting circles requires a greater investment in time and patience to achieve a more precise alignment of the telescope's polar axis to the celestial pole. For this reason, in part, star-hopping is popular because it is the faster, easier way to become initiated in the hobby.

The Celestial Sphere

Understanding how astronomical objects move: Due to the Earth's rotation, celestial bodies appear to move from East to West in a curved path through the skies. The path they follow is known as their line of Right Ascension (R.A.). The angle of this path they follow is known as their line of Declination (Dec.). Right Ascension and Declination is analogous to the Earth-based coordinate system of latitude and longitude.

Understanding celestial coordinates: Celestial objects are mapped according to the R.A. and Dec. coordinate system on the "celestial sphere," the imaginary sphere on which all stars appear to be placed. The Poles of the celestial coordinate system are defined as those 2 points where the Earth's rotational axis, if extended to infinity, North and South, intersect the celestial sphere. Thus, the North Celestial Pole is that point in the sky where an extension of the Earth's axis through the North Pole intersects the celestial sphere. In fact, this point in the sky is located near the North Star, or Polaris.

On the surface of the Earth, "lines of longitude" are drawn between the North and South Poles. Similarly, "lines of latitude" are drawn in an East-West direction, parallel to the Earth's equator. The celestial equator is simply a projection of the Earth's equator onto the celestial sphere. Just as on the surface of the Earth, imaginary lines have been drawn on the celestial sphere to form a coordinate grid. Celestial object positions on the Earth's surface are specified by their latitude and longitude.

The celestial equivalent to Earth latitude is called "Declination," or simply "Dec," and is measured in degrees, minutes or seconds north ("+") or south ("-") of the celestial equator. Thus any point on the celestial equator (which passes, for example, through the constellations Orion, Virgo and Aquarius) is specified as having 0°0'0" Declination. The Declination of the star Polaris, located very near the North Celestial Pole, is +89.2°.

The celestial equivalent to Earth longitude is called "Right Ascension," or "R.A." and is measured in hours, minutes and seconds from an arbitrarily defined "zero" line of R.A. passing through the constellation Pegasus. Right Ascension coordinates range from 0hr0min0sec up to (but not including) 24hr0min0sec. Thus there are 24 primary lines of R.A., located at 15 degree intervals along the celestial equator. Objects located further and further east of the prime (0h0m0s) Right Ascension grid line carry increasing R.A. coordinates.

With all celestial objects therefore capable of being specified in position by their celestial coordinates of Right Ascension and Declination, the task of finding objects (in particular, faint objects) in the telescope can be simplified. The setting circles, R.A. and Dec. of the telescope may be dialed, in effect, to read the object's coordinates, positioning the object in the vicinity of the telescope's telescopic field of view. However, these setting circles may be used to advantage only if the telescope is first properly aligned with the North Celestial Pole.

Lining Up with the Celestial Pole

Objects in the sky appear to revolve around the celestial pole. (Actually, celestial objects are essentially "fixed," and their apparent motion is caused by the Earth's axial rotation). During any 24 hour period, stars make one complete revolution about the pole, making concentric circles with the pole at the center. By lining up the telescope's polar axis with the North Celestial Pole (or for observers located in Earth's Southern Hemisphere with the South Celestial Pole), astronomical objects may be followed, or tracked, simply by moving the telescope about one axis, the polar axis.

If the telescope is reasonably well aligned with the pole, therefore, very little use of the telescope's Declination flexible cable control is necessary-virtually all of the required telescope tracking will be in Right Ascension. (If the telescope were perfectly aligned with the pole, no Declination tracking of stellar objects would be required). For the purposes of casual visual telescopic observations, lining up the telescope's polar axis to within a degree or two of the pole is more than sufficient: with this level of pointing accuracy, the telescope can track accurately by slowly turning the telescope's R.A. flexible cable control and keep objects in the telescopic field of view for perhaps 20 to 30 minutes.

Related Topics:

| home | about meade | product information | dealer locator | Meade 4M |
| customer support | investor relations | dealer support |
| employment opportunities | site map |

® The name Meade, the Meade logo, and ETX are trademarks registered with the United States Patent Office,
and in principal countries throughout the world.
Copyright © 2006 Meade Instruments Corporation, All Rights Reserved.
This material may not be reproduced in any form without permission.